

A. Design Critia

1/ Code References
a - EM 1110-2-2014
b-EM 1110-2-2100
c - EM 1110-2-2007
e-EM 1110-2-2502
d - EM 1110-2-2902
f-Concrete Pipe Design Manual, American Concrete Pipe Association
g - Design Data , Highway Live load on Concrete Pipe, American Concrete Pipe Association

2/ Loading

For 18 inch RCP(D-Load 2500) located at 5 ft from the finished grade

Pipe outter diameter
Pipe outter diameter
Pipe Length
Soil height above pipe
Soil density
Pipe self weight
soil above pipe
Full water in pipe
Load combination
Load factor
$\mathrm{U}=\mathrm{LF}$ ($\mathrm{Lp}+\mathrm{Ltu}+\mathrm{Ldu})$

B. Shear and Moment

Moment at collar
Shear at collar

$$
\begin{array}{rr}
\mathrm{D}_{\mathrm{i}}= & 1.5 \mathrm{ft} \\
\mathrm{D}= & 2 \mathrm{ft} \\
\mathrm{~L}= & 12 \mathrm{ft} \\
\mathrm{~h}= & 5 \mathrm{ft} \\
\mathrm{~g}= & 140 \mathrm{pcf} \\
\mathrm{w}_{\mathrm{p}}= & 168 \mathrm{lb} / \mathrm{ft} \\
\mathrm{w}_{\mathrm{s}}= & 1400 \mathrm{lb} / \mathrm{ft} \\
\mathrm{w}_{\mathrm{w}}= & 110 \mathrm{lb} / \mathrm{ft} \\
& \\
\mathrm{LF}= & 2.2 \\
\mathrm{U}= & 3692 \mathrm{lb} / \mathrm{ft}
\end{array}
$$

(3-2, EM-1100-2-2014)

C. Analysis of collar connection

| $\beta_{1}=$ | 0.85 |
| ---: | ---: | ---: |
| $\mathrm{f}_{\mathrm{c}}=$ | 4 ksi |
| $\mathrm{f}_{\mathrm{y}}=$ | 60 ksi |
| $\mathrm{E}_{\mathrm{s}}=$ | 29000 ksi |
| $\mathrm{d}=$ | 12 in |
| $\mathrm{b}=$ | 48 in |
| $\mathrm{A}_{\mathrm{s}}=$ | 1.24 in 2 |

a. Steel ratio

$\rho_{\text {act }}=\mathrm{As} /(\mathrm{b} * \mathrm{~d})$	$\rho_{\text {act }}=$	0.00215
$\mathrm{pb}=0.85 * \mathrm{~b} 1 * \mathrm{f}^{\prime} \mathrm{c} / \mathrm{fy}$	$\rho_{\mathrm{b}}=$	0.02851

$$
\rho_{\text {act }}=0.0021!<0.25 * \rho_{\mathrm{b}}=0.0071
$$

=> The detailed analysises of the serviceability limit states are not required
b. Compute the flexural capacity rebar cover
$\phi M_{n}=f * A_{s} * f_{y}(d-a / 2)$

$$
\begin{array}{cc}
c= & 2 \\
\phi= & 0.85 \\
a= & 0.455882353 \mathrm{in} .
\end{array}
$$

$$
\phi \mathrm{M}_{\mathrm{n}}=\quad 617.99 \mathrm{k}-\mathrm{ft} \quad>266: \mathrm{OK}
$$

c. Check Shear

$\mathrm{V}_{\mathrm{c}}=2 \sqrt{ } \sqrt{\left(\mathrm{f}^{\prime} \mathrm{c}\right)}{ }^{*} \mathrm{~b} * \mathrm{~d}$
$\phi=\quad 0.85$
$\phi \mathrm{V}_{\mathrm{C}}=$
1728 kips
>44
:OK

ELEVATION

SECTION X-X

D-Load Calculations For The Proposed 18-in RCP Side Drain.

DESCRIPTION

D-Load calculation were per formed for a 18" RCP being punched through the existing retaining wall

FIGURES

All measurements in feet unless specified otherwise
Actual pipe dimensions
(considering 11.7\% vertical slope noted on HDR plans CD00006)

Top channel wall section
Top of channel wall

Elevation
363.37

D-LOAD

Pipe properties
Internal pipe diameter
pipe thickness
$D_{i}=$
$\mathrm{t}=$
$Y_{S}=$
$\mathrm{H}=$
FS =
$\mathrm{K}_{\mathrm{u}}{ }^{\prime}=$
0.15

4 ft
$\mathrm{B}_{\mathrm{d}}=$ 1.04

$$
C_{d}=\frac{1-e^{-2 K_{u}, \frac{H}{B_{d}}}}{2 K_{u}{ }^{\prime}}
$$

(base width of pipe +12 " on each side per Flood Control District plans)

$$
\begin{aligned}
& \text { Earth load } \\
& \qquad W_{e}=C_{d} \gamma B_{d}^{2}
\end{aligned}
$$

Live load
$W_{1}=$
0
Total vertical load
W =
L.F. =
2.7

Load factor
Load factor for trench condition
$W_{e}=$
2334.91
(case 3 bedding installation)

D-Load

$$
D-\text { load }=\frac{W x S . F .}{D_{i} x L . F .} \quad \text { D-Load }=\quad 720.65
$$

Rounding factor

For pipes 36 " and less in diameter, round the calculated D-Load value to the next highest 250
D-Load ${ }_{0.01}=$
750 lb

